Shivaji University , Kolhapur Question Bank For Mar 2022 (Summer) Examination

 Subject Code : 73206
 Subject Name : Metallurgy

Unit 1

- 1. What are Intermediate phases? What are the various types of Intermediate phases? Explain each in short.
- 2. What is Gibbs phase rule? Evaluate Degree of freedom (F) for a Solid solution alloy and a Eutectic alloy using cooling curves.
- 3. Draw a typical equilibrium diagram for impure / partial eutectic systems and explain the cooling and solidification of any hypoeutectic alloy from above melting temperature to room temperature and draw the room temperature structure.
- 4. Draw the crystal structures of FCC and HCP and evaluate the number of atoms per unit Cell for both.
- 5. Explain in detail the procedure to draw equilibrium diagram by thermal analysis method.
- 6. what is Gibbs phase rule? explain how this rule is modified for metallurgical system
- 7. sketch and explain BCC,FCC and HCP crystal structure
- 8. explain in short nucleation and green growth mechanism
- 9. what you mean by solid solution differentiate substitution and interstitial solid solution
- 10.explain in short different imperfections in crystal structure
- 11.explain what cooling curves are. draw different types of cooling curves and evaluate degree of freedom of anyone
- 12. what are Hume Ruthery rules for substitutional solid solution? Explain.
- 13. what is coring and Dendritic structure? explain with neat sketches

Write short note on following

- a) Solid solution
- b) Coring
- c) Gibb's phase rule
- d) Coring and Dendrite structure
- e) intermetallic compounds
- f) nucleation and grain growth
- g) liver arm

Draw self explanatory sketches of the following

- a) Substitutional and Interstitial solid solutions
- b) Coring and Dendrite structure
- c) FCC and BCC crystal structure

Differentiate clearly between of the following

- a) Substitutional and interstitial solid solution.
- b) BCC and FCC structure,

- 1. Draw Iron Iron Carbide(Fe-Fe₃C) Equilibrium diagram, along with all the reactions , phases, and temperatures.
- 2. What are steels? How steels are classified based on the basis of composition, structure, properties and applications? Draw typical microstructure and write the applications of each type.
- 3. Draw neat sketch of Cu Zn equilibrium diagram and explain different types of brasses.
- 4. Draw neat sketch of Al Si equilibrium diagram . With reference to equilibrium diagram explain the modification treatment.
- 5. Explain IAS BS and AISI specification for Steels
- 6. draw Cu-Zn equilibrium diagram? show variation of tensile strength and ductility with wearing amount of Zn in brass
- 7. Classified the cast iron?
- 8. why hypereutectoid Steels are harden from just above critical temperature while hypereutectoid steel are above upper critical temperature
- classify plane carbon Steels write down properties and applications of plain Carbon Steel
- 10. classify brassess and differentiate clearly between alpha and alpha beta brass

Write short note on following

- a) Tool steels
- b) Water hardenable Tool steels
- c) Stainless steels
- d) Ferritic Stainless steels
- e) Berrilium bronzes.
- f) Cast Iron

- g) alpha beta brass,
- h) effect of Cr and Ni in stainless steel
- i) effect of allowing element in tool Steel
- j) composition and properties of heating element alloys
- k) beryllium bronze
- l) brasses
- m) cast iron
- n) Alloy steels

Draw self explanatory sketches of the following

- a) Microstructures of 0.4 and 1.2 % carbon steel
- b) Microstructures of 70:30 brass as cast and annealed
- c) Microstructures of White and gray cast irons
- d) Microstructures of White and malleable cast irons
- e) Microstructures of α and $\alpha + \beta$ brasses.
- f) Sn-Sb equilibrium diagram
- g) Typical microstructures of medium and high carbon steel.
- h) microstructure of ductile cast iron
- i) typical micro structures of medium Carbon Steel and high Carbon Steel
- j) microstructures of white and grey cast iron
- k) micro structure of point 8% Carbon Steel
- 1) microstructure of nodular cast iron

Differentiate clearly between of the following

a) Eutectic and Eutectic system,

1. Explain working principle and steps in Brunel hardness testing

Write short note on following

- a) Ultra sonic Testing
- b) Rockwell hardness test.
- c) Stages in Dye Penetrant test.
- d) Impact Testing
- e) magnetic particle test
- f) radiographic test
- g) Eddy current test

Draw self explanatory sketches of the following

- a) Magnetic particle test setup
- b) Creep test setup
- c) X-Ray radiography
- d) Gamma-Ray radiography
- e) Stress strain curve for mild steel and cast iron
- f) Charpy impact test setup,
- g) izod impact test setup,

Differentiate clearly between of the following

- a) pulse echo and through transmission method,
- b) fatigue and creep testing

- 1. Give the classification of heat treatment furnaces. Explain any two types of furnaces with neat sketch.
- 2. Explain in detail the procedure to draw TTT diagram for eutectoid steel. Discuss the effect of alloying elements on TTT diagram.
- 3. Explain in detail the transformation of Austenite to Pearlite.
- 4. Explain the procedure to draw CCT diagram for 0.8 % carbon steel. Compare CCT diagram with TTT diagram.
- 5. Explain the mechanism of transformation austenite into upper and lower bainite
- 6. Draw CCT diagram overlap on TTT diagram and explain its significance
- 7. Explain transformation process of austenite into martensite

Write short note on following

- a) heat treatment furnaces
- b) Austenite to pearlite transformation
- c) controlled atmosphere

Draw self explanatory sketches of the following

- a) transformation of pearlite into Austenite
- b) salt bath furnace,
- c) Pit type heat treatment furnace

Compare and contrast of the following.

- a) TTT diagram and CCT diagram.
- b) Bainite and Martensite.
- c) Pearlite and Ferrite
- d) Bainitic Transformation.

- 1. Explain tempering heat treatment along with the structural changes involved in it
- 2. Explain mechanism of quenching and quenching baths
- 3. What is annealing heat treatment ? Mention the purposes of annealing . Explain any two types of annealing in detail
- 4. What is heated treatment? What are the various purposes of heat treatment.
- 5. What is precipitation hardening? explain with neat sketch process of precipitation hardening for Al-Cu
- 6. What is flame hardening? and what are its advantages, limitations and applications
- 7. What are the various types of flame hardening
- 8. what is heat treatment? Write important types of heat treatment carried out on steels
- 9. what is carburizing? what are its types ?
- 10.Explain liquid carburizing with neat sketch and write its advantages and limitations
- 11.Explain various steps of heat treatment and the purpose of each step
- 12.what is annealing and what are the purposes of annealing? explain any two types of annealing with their purpose
- 13. what is tempering? what are the purposes of tempering?
- 14. what is nitriding? what are the different types of nitriding? explain any one

Write short note on following

- a) Induction Hardening
- b) Sub zero treatment
- c) Salt bath furnace and air furnaces.
- d) Heat treatment defects
- e) Tempering,
- f) Austempering,
- g) Martempering
- h) Carburizing,
- i) Mechanism of quenching

Draw self explanatory sketches of the following

a) setup for flame hardening

Differentiate clearly between of the following

- b) Annealing and Normalising.
- c) Annealing and Tempering process
- d) Austempering and Martempering .
- e) Nitriding and Cyaniding.
- f) Flame hardening & Induction hardening.
- g) Hardening and Tempering
- h) curborizing and nitriding
- i) surface hardening and case hardening
- j) nitrating and carburizing

- 1. Draw Flowchart for manufacturing of self lubricating bearings? Explain why oil impregnation is must in this process?
- 2. Draw Flowchart for carbide cutting tools manufactured by powder metallurgy techniques, why pre-sintering is necessary in such tools?
- 3. explain with net sketch process of compacting in powder metallurgy and write its purposes
- 4. Write classification and various types of powder manufacturing. Write process of powder manufacturing of any two types
- 5. what is sintering and what are it purposes

Write short note on following

- a) Compacting and sintering
- b) Self lubricating bearing.
- c) Liquid phase sintering.
- d) Methods of powder manufacturing
- e) sintering

Draw self explanatory sketches of the following

- a) Flow chart for manufacturing of diamond impregnated tools.
- b) Y cone type powder mixer

Differentiate clearly between of the following

a) compacting and sintering